Alcohols, Phenols and Ethers

1. Assertion (A): Benzyl alcohol is an isomer of p-cresol.

Reason (R): Benzyl alcohol is also known as Benzenol.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **2. Assertion (A):** Phenol is stronger acid than alcohols.

Reason (R): Phenol is stabilized by resonance whereas alcohol are not.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** Phenols give picric acid on nitration with conc. HNO₃.

Reason (R): -OH group in phenol shows - M effect.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **4. Assertion (A):** m-Nitrophenol is less acidic than p-nitrophenol.

Reason (R): p-Nitrophenol has intra molecular H-bonding.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

5. Assertion (A): Benzene sulphonic acid on heating with NaOH gives sodium phenate.

Reason (R): Sulphonic group is a poor leaving group.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** Ph-O-CH₃ can be prepared from PhONa and methyl iodide.

Reason (R): Aryl halides are less reactive substrates for nucleophilic substitution reaction.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **7. Assertion (A):** Cumene (isopropyl benzene) reacts with O₂ and after hydrolysis gives phenol and acetone.

Reason (R): Initially cumene converts into 2-phenylpropan-2-ol.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

8. Assertion (A): Methoxy ethane has more boiling point than propanal.

Reason (R): Attraction is more in methoxy ethane than propanal.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **9. Assertion (A):** Anisole on reaction with HI gives phenol and CH₃I.

Reason (R): Phenol-oxygen bond is stronger than methyl-oxygen bond in anisole and hence is not claved by HI.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **10. Assertion (A):** In Lucas test, 3° alcohols react immediately.

Reason (R): A mixture of anhydrous ZnCl₂ and conc. HCl is called Lucas reagent.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **11. Assertion (A):** Addition reaction of water to but-1-ene in acidic medium yields butan-1-ol.

Reason (R): Addition of water in acidic medium proceeds through the formation of primary carbocation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

12. Assertion (A): p-nitrophenol is more acidic than phenol.

Reason (R): Nitro group helps in the stabilization of the phenoxide ion by dispersal of negative change due to resonance.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **13. Assertion (A):** Boiling points of alcohols and ethers are high.

Reason (R): They can form intermolecular hydrogen-bonding.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. Assertion (A):** Like bromination of benzene, bromination of phenol is also carried out in the presence of Lewis acid.

Reason (R): Lewis acid polarizes the bromine molecule.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **15. Assertion (A):** Phenol forms 2, 4, 6,– tribromophenol on treatment with Br₂ in carbon disulphide at 273 K.

Reason (R): Bromine polarizes in carbon disulphide.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

16. Assertion (A): p-Nitrophenol gives more electrophilic substituted compound than m-methoxyphenol

Reason (R): methoxy group shows only negative *I*-effect.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **17. Assertion (A):** Phenol is more acidic than ethanol.

Reason (R): Phenoxide ion is resonance stabilised

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **18. Assertion (A):** Phenol forms 2, 4, 6-tribromo-phenol on treatment with Br₂-water at 273 K.

Reason (R): In Phenol –OH is o, p-directing group.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **19. Assertion (A):** Phenol undergoes Kolbe reaction whereas ethanol does not.

Reason (R): Phenoxide ion is more basic than ethoxide ion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

20. Assertion (A): o-nitrophenol is more volatile than p-nitrophenol

Reason (R): Intramolecular hydrogen bonding is present in o-nitrophenol while intermolecular H-bonding is in p-nitrophenol.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 21. Assertion (A): CH_3OCH_3 and C_2H_5OH has comparable molecular weight but boiling point of C_2H_5OH is more than dimethyl ether.

Reason (R): C₂H₅OH forms intermolecular H-bonding while CH₃OCH₃ forms intramolecular H-bonding.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **22. Assertion (A):** Ethers behave as bases in the presence of mineral acids

Reason (R): It is due to the presence of lone pair of electrons on the oxygen.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

23. Assertion (A): The major products formed by heating C₆H₅CH₂OCH₃ with Hl are C₆H₅CH₂I and CH₃OH

Reason (R): Benzyl cation is more stable than methyl cation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **24. Assertion (A):** The pK_a of acetic acid is lower than that of phenol.

Reason (R): Phenoxide ion is more resonance stabilised.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **25. Assertion (A):** 2-Butanol on heating with H₂SO₄ gives 2-butene as major product.

Reason (R): Dehydration of 2-butanol follows Saytzeff's rule.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

26. Assertion (A): Tertiary alcohol does not form ester with carboxylic acid in the presence of conc. H₂SO₄

Reason (R): Tertiary alcohol undergoes dehydration in the presence of conc. H_2SO_4 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **27. Assertion (A): Bromination** of phenol in aqueous medium or in CS_2 leads to different products.

Reason (R): Phenol in aqueous medium is more activating towards EAS than it is in CS_2 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **28.** Assertion (A): The major products formed by heating $C_6H_5CH_2OCH_3$ and HI are $C_6H_5CH_3I$ and CH_3OH .

Reason (R): Benzyl cation is more stable than methyl cation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

29. Assertion (A):

Reason (R): Reaction proceeds by carbanion mechanism.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **30. Assertion (A):** Ease of dehydration with H₂SO, follows the order:

Reason (R): More stable the carbocation, **easier** the dehydration in acidic medium.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **31. Assertion (A):** 3° alcohols show turbidity within 5 minutes, when treated with lucas reagent.

Reason (R): Conc. HCI and anhydrous z_{nCI_2} in 1:1 mixture is called Lucas reagent.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

32. Assertion (A): CH₂OH is a nucleophile.

Reason (R): CH₃OH forms sodium

methoxide on treatment with NaOH

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **33. Assertion (A):** Primary and secondary alcohol can be distinguished by Victor-Meyer test.

Reason (R): Primary alcohols form nitrolic acids which dissolve in NaOH to form blood red colour but secondary alcohols from pseudonitroles which gives blue colour with NaOH

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **34.** Assertion (A): The acidity of alcohols follows the order $1^{\circ} > 2^{\circ} > 3^{\circ}$.

Reason (R): The +I effect of the additional alkyl groups favours the cleavage of O-H bond.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

35. Assertion (A): Ether behaves as bases in the presence of mineral acids.

Reason (R): Due to the presence of lone pair of electrons on oxygen.

(1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)

- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **36. Assertion (A):** The boiling point of ethanol is much higher than that of dimethyl ether.

Reason (R): In ethanol, the molecules are associated by the formation of intermolecular hydrogen bonding whereas in diethyl diether it is absent.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **37. Assertion (A):** Tert. butyl methyl ether is not prepared by the reaction of tert. butyl bromide with sodium methoxide.

Reason (R): Sodium methoxide is a strong nucleophile.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false

38. Assertion (A): With HI, anisole forms iodobenzene and methyl alcohol.

Reason (R): Fion will combine with smaller group to avoid steric hindrance.

(1) Both (A) & (R) are true and the (R) is

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **39. Assertion (A):** t-butyl methyl ether on reaction with HI at 273 K gives tert. butyl iodide and methanol.

Reason (R): The reaction occurs by SN² mechanism.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)(3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **40. Assertion (A):** Phenol is more reactive than benzene towards electrophilic substitution.

Reason (R): In case of phenol, the intermediate carbocation is more resonance stabilized.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false

41. Assertion (A): p-nitrophenol is stronger acid than 0 nitrophenol.

Reason (R): Intramolecular hydrogen bonding makes ortho-isomer weaker acid than para isomer.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **42. Assertion (A):** Phenol is stronger acid than alcohols.

Reason (R): Phenoxide is stabilized by resonance whereas alkoxide is not.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **43. Assertion (A):** Phenols undergo electrophilic substitution at the ring much more readily than aryl halides.

Reason (R): In aryl halides electron density at the ring decreases due to resonance whereas in phenols it increases.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

44. Assertion (A): -OH group in phenols cannot be substituted easily.

Reason (R): C-O bond in phenols has partial double bond character due to resonance.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **45. Assertion (A):** Sodium salts of phenols can exist in water whereas sodium salts of alcohols do not exist in water.

Reason (R): Phenol is stronger acid than water whereas alcohol is weaker acid than water

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **46. Assertion (A):** Benzyl alcohol turns blue litmus red.

Reason (R): Benzyl alcohol is an isomer of p-cresol.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false

47. Assertion (A): Phenol is more reactive than benzene towards electrophilic substitution reactions.

Reason (R): In the case of phenol, the intermediate carbocation is more resonance stabilized.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false
- **48. Assertion (A):** p-Nitrophenol is a stronger acid than o-nitrophenol.

Reason (R): Intramolecular H-bonding makes 0 -isomer weaker than p-isomer.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **49. Assertion (A):** Solubility on n-alcohols in water decreases with increase in molecular weight.

Reason (R): The relative proportion of the hydrocarbon part in alcohols increases with increasing molecular weight which permits enhanced hydrogen bond with water.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3)(A) is true but (R) is false
- (4) Both (A) and (R) are false

50. Assertion (A): t-Bu toxide is a stronger base than OH^- or $C_2H_5O^-$ ion but is a much poorer nucleophile.

Reason (R): A negatively charged ions is always more powerful nucleophile than its conjugate acid.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

ANSWER KEY																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	2	3	3	3	1	3	4	1	2	4	1	4	4	4	4	1	2	3	1
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	1	1	3	1	1	1	1	3	1	3	1	1	1	1	1	1	2	4	3
Que.	41	42	43	44	45	46	47	48	49	50										
Ans.	1	1	1	1	2	1	4	1	3	2										

